LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – APRIL 2023

UMT 5503 – DISCRETE MATHEMATICS

Date: 05-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM

PART A

 $(10 \times 2 = 20)$

 $(5 \times 8 = 40)$

Max.: 100 Marks

- 1. Construct the truth table for $(P \lor Q) \land \neg (P \land Q)$.
- 2. Write the following statement in symbolic form:

"If either Jerry takes calculus or Ken takes sociology then Larry will take English".

- 3. Show that the conclusion C: Q follows from the premises $H_1: \neg P$ and $H_2: P \lor Q$.
- 4. Let $A = \{1, 2, 3, 4, 5, 6\}$. Determine the truth value of $(\exists x \in A)(x^2 > 25)$.
- 5. Define semigroup and give an example.
- 6. Prove that every cyclic monoid is commutative.
- 7. Draw Hasse diagram for $(\rho(A), \subseteq)$ where $A = \{a, b, c\}$.
- 8. Is the poset $(Z^+,/)$ a lattice? Justify it.
- 9. Let (B, +, .) be a Boolean algebra and if $a, b \in B$, prove that a + ab = a.
- 10. Define Boolean algebra.

Answer ALL the questions

PART B

Answer any FIVE questions

- 11. Prove that $(\neg P \land (\neg Q \land R)) \lor ((Q \land R) \lor (P \land R)) \Leftrightarrow R$.
- 12. Obtain CNF of $\neg (P \lor Q) \rightleftharpoons (P \land Q)$.
- 13. Establish the validity of the following argument: "If an integer is divisible by 10 then it is divisible by 2. If an integer is divisible by 2 then it is divisible by 3. Therefore, the integer divisible by 10 is also divisible by 3".
- 14. Show that the composition of semigroup homomorphism is also a semigroup homomorphism.
- 15. Prove that for any commutative monoid (M,*), the set of idempotent elements of M forms a sub monoid.
- 16. Prove that any lattice homomorphism is order preserving.
- 17. If S_{42} is the set of all divisors of 42 and D is the relation 'divisor of' on S_{42} . Prove that (S_{42}, D) is a complemented lattice.
- 18. State and prove Stone's Representation theorem.

PART C	
Answer any TWO questions	(2 x 20 =40)
19. (a) Determine whether $(\neg 0 \land (P \rightarrow 0)) \rightarrow \neg P$ is a tautology.	
(b) Obtain the PDNF and PCNF of $(\neg P \rightarrow R) \land (Q \rightleftharpoons P)$.	(8+12)
20. (a) Show that $S \lor R$ is tautologically implied by $P \lor Q$, $P \to R$ and $Q \to S$.	× ,
(b) Let $(S,*)$ be a semigroup and R be a congruence relation on $(S,*)$. Then	prove that the quotient set
S/R is a semigroup $(S/R, \oplus)$ where the operation \oplus corresponds to the operation $*$ on S. Also show	
that there exists a homomorphism from $(S,*)$ onto $(S/R, \oplus)$.	(8+12)
21. State and prove idempotent, associative, commutative and absorption properties of Lattice.	
	(20)
22. (a) In a complemented distributive lattice, show that the following are equivalent	
$a \leq b \Leftrightarrow a \wedge b' = 0 \Leftrightarrow a' \vee b = 1 \Leftrightarrow b' \leq a'.$	
(b) Obtain the product-of-sums canonical forms of the Boolean expression in three variables x_1, x_2, x_3	
(i) $x_1 * x_2$	
(ii) $x_1 \oplus x_2$	
(iii) $(x_1 * x_2)' \oplus x_3.$	(10+10)
