LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2023
UMT 5503 - DISCRETE MATHEMATICS

Date: 05-05-2023
Time: 01:00 PM - 04:00 PM

PART A

Answer ALL the questions
($10 \times 2=20$)

1. Construct the truth table for $(P \vee Q) \wedge \neg(P \wedge Q)$.
2. Write the following statement in symbolic form:
"If either Jerry takes calculus or Ken takes sociology then Larry will take English".
3. Show that the conclusion $C: Q$ follows from the premises $H_{1}: \neg P$ and $H_{2}: P \vee Q$.
4. Let $A=\{1,2,3,4,5,6\}$. Determine the truth value of $(\exists x \in A)\left(x^{2}>25\right)$.
5. Define semigroup and give an example.
6. Prove that every cyclic monoid is commutative.
7. Draw Hasse diagram for $(\rho(A), \subseteq)$ where $A=\{a, b, c\}$.
8. Is the poset $\left(Z^{+}, /\right)$a lattice? Justify it.
9. Let $(B,+,$.$) be a Boolean algebra and if a, b \in B$, prove that $a+a b=a$.
10. Define Boolean algebra.

PART B

Answer any FIVE questions

11. Prove that $(\neg P \wedge(\neg Q \wedge R)) \vee((Q \wedge R) \vee(P \wedge R)) \Leftrightarrow R$.
12. Obtain CNF of $\neg(P \vee Q) \rightleftarrows(P \wedge Q)$.
13. Establish the validity of the following argument: "If an integer is divisible by 10 then it is divisible by 2 . If an integer is divisible by 2 then it is divisible by 3 . Therefore, the integer divisible by 10 is also divisible by 3 ".
14. Show that the composition of semigroup homomorphism is also a semigroup homomorphism.
15. Prove that for any commutative monoid $(M, *)$, the set of idempotent elements of M forms a sub monoid.
16. Prove that any lattice homomorphism is order preserving.
17. If S_{42} is the set of all divisors of 42 and D is the relation 'divisor of' on S_{42}. Prove that $\left(S_{42}, D\right)$ is a complemented lattice.
18. State and prove Stone's Representation theorem.

PART C

Answer any TWO questions

19. (a) Determine whether $(\neg Q \wedge(P \rightarrow Q)) \rightarrow \neg P$ is a tautology.
(b) Obtain the PDNF and PCNF of $(\neg P \rightarrow R) \wedge(Q \rightleftarrows P)$.
20. (a) Show that $S \vee R$ is tautologically implied by $P \vee Q, P \rightarrow R$ and $Q \rightarrow S$.
(b) Let $(S, *)$ be a semigroup and R be a congruence relation on $(S, *)$. Then prove that the quotient set S / R is a semigroup $(S / R, \oplus)$ where the operation \oplus corresponds to the operation $*$ on S. Also show that there exists a homomorphism from $(S, *)$ onto $(S / R, \oplus)$.
21. State and prove idempotent, associative, commutative and absorption properties of Lattice.
22. (a) In a complemented distributive lattice, show that the following are equivalent $a \leq b \Leftrightarrow a \wedge b^{\prime}=0 \Leftrightarrow a^{\prime} \vee b=1 \Leftrightarrow b^{\prime} \leq a^{\prime}$.
(b) Obtain the product-of-sums canonical forms of the Boolean expression in three variables x_{1}, x_{2}, x_{3}
(i) $x_{1} * x_{2}$
(ii) $x_{1} \oplus x_{2}$
(iii) $\quad\left(x_{1} * x_{2}\right)^{\prime} \oplus x_{3}$.
(10+10)
